The processing of ultra-thin glass requires specialised handling to avoid glass breakage during production. Until now, this has been a major obstacle for the entry of this innovative material into new applications. Therefore, a unique process chain for ultra-thin glass processing has been implemented at Fraunhofer FEP (Dresden, Germany): starting with adapted cleaning processes up to the final inspection. The results have been funded within the project CUSTOM (grant no. AiF 21708 BR) by the German Federal Ministry of Economics and Climate Protection BMWK and the project Glass4Flex (grant no. 13N14615) funded by the German Federal Ministry of Education and Research BMBF.
Recent years have seen strong development in printed electronics capacities and applications for healthcare. Linxens (Mantes-La-Jolie, France), as a global leader, has massively invested to accelerate development of connected health solutions utilising its recognised expertise in printed electronics through three main technology segments:
During pregnancy, regular medical check-ups provide information about the health and development of the pregnant person and the child. However, these examinations only provide snapshots of their state, which can be dangerous, especially in high-risk cases. To enable convenient and continuous monitoring during this sensitive phase, an international research consortium is planning to further develop the technology of smart textiles. A patch equipped with highly sensitive electronics is meant to collect and evaluate vital data. In addition, the sensors will be integrated into baby clothing in order to improve the future of medical monitoring for newborns with the highest level of data security.